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A B S T R A C T   

The ever-increasing pandemic and natural disasters might spatial-temporal overlap to trigger compound disasters 
that disrupt urban life, including human movements. In this study, we proposed a framework for data-driven 
analyses on mobility resilience to uncover the compound effects of COVID-19 and extreme weather events on 
mobility recovery across cities with varied socioeconomic contexts. The concept of suppression risk (SR) is 
introduced to quantify the relative risk of mobility being reduced below the pre-pandemic baseline when certain 
variables deviate from their normal values. By analysing daily mobility data within and between 313 Chinese 
cities, we consistently observed that the highest SR under outbreaks occurred at high temperatures and abnormal 
precipitation levels, regardless of the type of travel, incidences, and time. Specifically, extremely high temper-
atures (at 35 ◦C) increased SR during outbreaks by 12.5%-120% but shortened the time for mobility recovery. 
Increased rainfall (at 20 mm/day) added SRs by 12.5%-300%, with delayed effects reflected in cross-city 
movements. These compound impacts, with varying lagged responses, were aggravated in cities with high 
population density and low GDP levels. Our findings provide quantitative evidence to inform the design of 
preparedness and response strategies for enhancing urban resilience in the face of future pandemics and com-
pound disasters.   

1. Introduction 

The ever-increasing worldwide environmental, socio-economic, and 
political crises may overlap in space and time, leading to the emergence 
of compound disasters (UNDRR, 2015). Unlike a single disaster and its 

cascading hazards, the interaction of multiple sourced disasters am-
plifies risks in broader societal and economic systems (Phillips et al., 
2020; Walton et al., 2021; Sohn & Kotval-Karamchandani, 2023). The 
compounding COVID-19 pandemic and extreme weather events have 
already affected at least 139.2 million people and caused the death of 
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17,242 until August 2021 (Walton et al., 2021). Measures to combat the 
pandemic, including social distancing and travel restrictions, have 
impaired local governments’ responses to weather hazards, thereby 
impacting urban life and livelihoods (Phillips et al., 2020; Walton et al., 
2021). However, these restrictions are not choices off the table, espe-
cially for epidemics with high rates of transmission and severity 
(Lazarus et al., 2022). Moreover, as the global climate changes, there is 
an increased risk of extreme weather and cross-species viral trans-
mission, suggesting that the co-occurrence of epidemics and extreme 
weather events may intensify in the future (Sobel & Tippett, 2018; Li & 
Zha, 2020; Kruczkiewicz et al., 2021; Carlson et al., 2022; Dodman et al., 
2022; IPCC, 2022). Therefore, there is a critical need to understand the 
impacts of these compound disasters on urban life to facilitate future 
pandemic preparedness and urban resilience development (UNDRR, 
2015; Zscheischler et al., 2018; Phillips et al., 2020). 

The vulnerability of regions to compound disasters varies signifi-
cantly due to their socioeconomic, demographic, cultural, environ-
mental, and racial disparities (IPCC, 2012; Phillips et al., 2020). At 
different spatial and time scales, existing studies have demonstrated the 
devastating consequences of compound hazards (Zscheischler et al., 
2018; Walton et al., 2021), the necessity of their impacts assessment 
(AghaKouchak et al., 2020; Stablein et al., 2022), and the importance of 
comprehensively considering compound factors in disaster prevention 
and mitigation (Vitolo et al., 2019; Matthews et al., 2019; van den Hurk 
et al., 2023). Descriptive and statistical analyses showed that 
poverty-stricken and marginalized areas are more affected by compound 
disasters and require a longer recovery time (Bai et al., 2020; Phillips 
et al., 2020; Walton et al., 2021; IPCC, 2022). However, there are gaps in 
understanding the quantitative impacts of compound disasters on 
human activities in cities, particularly in clarifying the differences be-
tween cities under varying conditions. 

Human movement is one of the fundamental elements of human 
behaviour and socio-economic development, and its change can reflect 
people’s adaptation to various contingencies (Lu et al., 2016; Hatchett 
et al., 2021; Hong et al., 2021; Yabe et al., 2022; Rajput et al., 2023). The 
mobility recovery process, bouncing back to the pre-disaster states, has 
been widely applied to measure the regional resilience characteristics 
(Stablein et al., 2022; Yabe et al., 2022; Liu et al., 2023). Researchers 
have developed proper metrics to evaluate (1) how disasters affect 
mobility patterns and to what extent, and (2) the duration of pertur-
bations following crises (Zhang et al., 2019). While the urban recovery 
from COVID-19 outbreaks and extreme weather events has been inves-
tigated separately, their combined impact on the recovery of human 
mobility in cities has not been adequately quantified. 

In this study, a data-driven dynamic mobility resilience analysis 
framework was designed to synthetically uncover the spatiotemporal 
heterogeneity of mobility recovery after compound disasters. The 
asynchronous travel restrictions of 313 Chinese prefecture-level cities 
under a zero-COVID policy in 2020–2022, together with extreme 
weather events, provided a real-world opportunity to investigate the 
impact of multiple crises for cities with different socio-economic set-
tings. We built a spatiotemporal Bayesian hierarchical model, coupled 
with distributed lag non-linear models (DLNM) (Lowe et al., 2021), to 
untangle the delayed effects of COVID-19 incidence and intervention 
stringency on mobility recovery. The suppression risk (SR) metric, rep-
resenting the relative effect of a factor that suppressed mobility recovery 
to the pre-pandemic level, was defined to measure the 
exposure-lag-response associations between different factors and the 
recovery of human mobility. We also assessed how the combined effects 
of the epidemic and extreme weather affected mobility, in terms of in-
tensity and timing, by incorporating the interaction between the DLNM 
of incidence and extreme weather conditions into the model. Finally, 
how these compound disasters interactively affected travel within and 
between cities with different socioeconomic conditions were compared. 
The findings can help recognize the risks and vulnerabilities of cities in 
the face of compounding disasters, facilitating resource preparation and 

policy tailoring by governments and responses at local communities. 

2. Related work 

2.1. Mobility recovery after the COVID-19 outbreaks 

The COVID-19 pandemic in 2020–2022 greatly impacted domestic 
and inter-region human mobility in complicated and unprecedented 
ways, notably through various travel restrictions as part of non- 
pharmaceutical interventions (NPIs) to mitigate virus transmission 
(Lai et al., 2020). Following the rollout of vaccines and the reduced 
severity of infections, governments have gradually relaxed local or 
regional travel restrictions, resulting in a rebound in local and regional 
mobility to pre-pandemic levels (Huang et al., 2021; Christidis et al., 
2022). Recent studies have indicated that increases in outbreak size and 
intervention stringency were not linearly associated with decreases in 
mobility (Kim & Kwan, 2021; Christidis et al., 2022; Wu & Shimizu, 
2022). Changes in travel patterns were generally observed days or even 
weeks after travel restrictions were enforced or eased (Tan et al., 2021; 
Mu et al., 2023). That is to say, the nonlinear and delayed effects of 
outbreaks and restrictions need to be considered in the mobility recov-
ery after disasters. 

During the pandemic, the intracity mobility and intercity movements 
were impacted by various factors and presented different recovery tra-
jectories (Liu et al., 2021; Mu et al., 2023). Due to concerns about the 
risks of viral widespread across regions, long-distance transport and 
travel have been significantly reduced (Kellermann et al., 2022; Wang, 
et al., 2022). Thus, intercity travel was more affected in magnitude than 
intracity travel (Mu et al., 2023). Therefore, the recovery patterns of 
intra- and inter-city flows facing compound disasters should be sepa-
rately evaluated to identify their differences. 

2.2. Mobility recovery after extreme weather events 

An extreme weather event is “rare as or rarer than the 10th or 90th 
percentile of a probability density function estimated from observa-
tions” (IPCC, 2022). It includes extreme heat event, extreme rainfall, 
hurricanes, tornadoes, and so on, which is supposed to be rare at a 
particular place and time of year. However, fixed thresholds of air 
temperatures and precipitation are commonly used for early warning of 
natural disasters like high temperatures, cold waves, and rainstorms in 
China (see Supplementary-Extreme weather). China also adopts these 
thresholds in official statistics of extreme weather (China Meteorological 
Administration, 2022). Therefore, this study used fixed thresholds to 
identify extreme weather events, while the spatial varying settings were 
used for sensitivity analysis of models and conclusions. 

Previous research has shown that extreme temperature and rainfall 
could affect human mobility in terms of traffic volume, travel modes, 
and time spent on travel (Brum-Bastos et al., 2018; Kasmalkar et al., 
2020; Wu et al., 2021; Mu et al., 2023), resulting in health and economic 
losses (UN Climate Change News, 2022). The US survey suggests cold, 
heat, and rainfall reduce outdoor movements (Obradovich & Fowler, 
2017; Hatchett et al., 2021). Rainstorms perturb urban mobility in hours 
(Zhang et al., 2019). But traffic interruption caused by urban flooding, 
which is generated from rainstorms or hurricanes, might take days or 
weeks to recover (Kasmalkar et al., 2020; Hong et al., 2021; Rajput et al., 
2023). Although Wu et al. (2021) proved weather-influenced mobility 
during the COVID-19 pandemic, the extent to which extreme weather 
events affect mobility recovery under disease outbreaks, in terms of 
intensity and timing, remains unclear. 

2.3. Heterogeneity of mobility recovery after disasters 

Travel recovery after disasters can also be affected by local socio-
economic, demographic, and geographic conditions, such as income (Li 
et al., 2021), population density (Liu et al., 2021; Kim & Kwan, 2021; 
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Mena et al., 2021), public holidays (Song et al., 2021; Ruktanonchai 
et al., 2021; Lai et al., 2022), and spillover effects of COVID-19 NPIs 
(Charoenwong et al., 2020; Zhao et al., 2021). For example, compared 
with the lockdown of a focal city, travel restrictions in neighbouring 
areas could lead to a larger decline of mobility (Zhao et al., 2021). This 
demonstrates the potential for policy and social spillover within an 
interconnected region in terms of human movement. These factors 
should all be considered to ascertain the spatiotemporal heterogeneity 
and mechanism of mobility variation in coupled crises. 

Moreover, human mobility has a seasonal pattern (Lai et al., 2019; 
Lu et al., 2016; Song et al., 2021; Lai et al., 2022). Thus, using the 
average mobility data from weeks before the outbreaks as a pre-disaster 
baseline is unsuitable for long-term analysis. Seasonal variation derived 
from the mobility dataset before the pandemic could be used to adjust 
the mobility baseline. 

3. Methods 

3.1. Data collection and pre-processing 

We obtained three publicly available city-level daily mobility data-
sets (i.e., intracity mobility intensity, inflow intensity, and outflow in-
tensity) from Baidu’s Qianxi (i.e. migration) data portal. Baidu 
anonymously collected mobility data of users through location-based 
services, when users opted in to share their locations. The data for 
over 1.2 billion monthly active mobile devices is gathered based on the 
global positioning system (GPS), IP address, location of signalling 
towers, and WIFI, for online searching, mapping, and a large variety of 
apps and software (Mu et al., 2023) The intracity mobility intensity was 
a relative percentage of the number of intracity movements compared to 
the number of residents in the city, while the inflow/outflow intensity 
was a relative magnitude of people inbound/outbound cities (Table 1). 
amongst the 368 administrative divisions with human mobility intensity 
given by Baidu, we selected daily mobility data for 313 cities in main-
land China (Fig. 1, Supplementary) between 1 January 2021 and 30 
December 2021 were collected to calculate the domestic mobility re-
covery degree of intracity and intercity (inflow/outflow) population 
movements in 2021, after the first wave of COVID-19 and the 

nationwide lockdown in the first half of 2020 in China. Rural prefectures 
(i.e., regions, leagues, and autonomous prefectures) were excluded 
because they did not have urban areas and urban socioeconomic 
information. 

The mobility data from Baidu in two other periods, i.e., 1 October 
2020 - 23 January 2021 and 1 January - 20 October 2022, were also 
collected for sensitive analysis. In addition, the data obtained from 
Baidu from January to March 2019 and 23 April 2013 - 29 April 2014 
were used to identify the day-of-the-week fluctuations and weekly var-
iants of mobility (Song et al., 2021). The impact of mobile device user 
growth to the baseline was also considered in the Supplementary. 

The number of daily new COVID-19 cases in each city was collected 
from the official websites of the provincial and municipal health com-
mittees, spanning the period from 1 October 2020 to 20 October 2022. 
Not only laboratory-confirmed patients with symptoms but asymptom-
atic infections were counted since the authorities treated them similarly 
under China’s zero-COVID policy (Liang et al., 2022). Then the transfer 
number of asymptomatic cases to confirmed ones who developed 
symptoms at a later stage was deducted from the number of daily new 
cases to avoid double counting. Daily incidence rate, i.e., the proportion 
of daily new cases reported in the total population of corresponding 
cities, was calculated to characterise the intensity of COVID-19 trans-
mission in each city. 

The policy stringency index obtained from the Oxford COVID-19 
Government Response Tracker was used as the indicator of NPI imple-
mentation (Hale et al., 2021). It is a daily average strictness index of all 
eight containment and closure policies and public information cam-
paigns. The index ranges from 0 to 100, with higher scores indicating 
stricter mobility restrictions. Given the national guidelines for imple-
menting a zero-COVID policy and the lack of city-level NPI data in 
China, we used the provincial policy stringency index data to investigate 
the NPI effects on mobility recovery at the city level of each province. 

Daily observed meteorological data, including mean temperature, 
maximum temperature, and total precipitation in 1990–2022, was 
downloaded from the Global Surface Summary of the Day dataset of 
NOAA’s National Centers for Environmental Information (Data Identi-
fiers: gov.noaa.ncdc:C00516). The inverse distance weighted interpo-
lation method was applied amongst stations in China and its 

Table 1 
List of data used in this study.  

Category Data Concept/explain Source Note 

Mobility Intracity mobility intensity A relative percentage of the number of intracity movements 
compared to the number of residents in the city 

Baidu’s Qianxi data portal Calculated as the 
recovery degree of 
intracity mobility 

Inflow/outflow intensity A relative magnitude of people inbound/outbound cities Baidu’s Qianxi data portal Calculated as the 
recovery degree of 
inflow/outflow 

Epidemic-related Number of daily new COVID- 
19 cases 

The summary of laboratory-confirmed patients with 
symptoms and asymptomatic infections 

Official websites of the 
provincial and municipal 
health committees 

Calculated as the daily 
incidence rate 

Policy stringency index* A daily average strictness index of all eight containment 
and closure policies and public information campaigns, 
indicating the stringency of policy implementation 

Oxford COVID-19 Government 
Response Tracker (Hale et al., 
2021)  

Weather Daily observed meteorological 
data* 

Daily mean temperature, maximum temperature, and total 
precipitation 

NOAA’s National Centers for 
Environmental Information  

Weather variations* Daily mean temperature and precipitation change between 
2021 and the baseline calculation period   

Weather anomalies* Daily mean temperature and precipitation differences from 
their 30-year average from 1990 to 2019   

Spatial 
differentiation 
factors 

Population size, urban density, 
total gross domestic product 
(GDP)* 

Socioeconomic and demographic characteristics of cities Statistical yearbooks of 
provinces and cities  

Temporal 
differentiation 
factors 

Chunyun and public holidays * The Spring Festival transport season holidays no less than 
three consecutive days 

Official website of the General 
Office of the State Council of 
China   

* data directly introduced into modelling in this study. 
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surrounding countries in 0.1-degree spatial resolution to obtain the 
spatial average of daily temperature and precipitation for each city 
(Khouni et al., 2021). This geoprocessing model was created with 
ModelBuilder of ArcGIS 10.6 software (Supplementary Fig. S1). The 
model was looped 12,053 times (days) to get the daily temperature and 
precipitation datasets for 313 Chinese cities in 33 years. For the three 
days (i.e., 11–13 February 2021) with limited observation data, 
re-analysed temperature data from ERA-5 (Hersbach et al., 2022) and 
gridded daily precipitation data from China National Climate Centre, 
both in 0.1-degree spatial resolution, were used instead (Supplementary 
Fig. S2). To distinguish whether the weather or weather change affected 
the mobility recovery, weather variations and weather anomalies were 
brought into analysis (Table 1). Additionally, the data of population size, 
urban density, and total gross domestic product (GDP) for cities at the 
end of 2019 were obtained to stratified cities under pre-pandemic so-
cioeconomic and demographic characteristics. Both data came from the 
statistical yearbooks of provinces and cities. Besides, the periods of 
Chunyun and public holidays over the years were obtained from the 
official website of the General Office of the State Council of China. R 
programming language (version 4.1.3) was used to implement data 
processing and geospatial analysis. 

3.2. Measuring the recovery degrees of mobility 

A three-step methodology was developed to quantify the intracity 
and intercity mobility recovery patterns and degrees across cities, 
comparing to pre-pandemic baselines. Seasonality of mobility was taken 
into account by using a weekly variation coefficient derived from a 
longer pre-pandemic mobility dataset from 2013 to 2014 (Song et al., 
2021). The degree of mobility recovery during the pandemic was 
defined as the percentage of human movement compared with the 
baseline. 

Step 1: Identifying the pre-pandemic baseline based on the temporal 
change patterns of mobility. To understand the seasonal fluctuations and 
day-out-of-week periodicity over time, we visualised the magnitude and 
change trajectories of different types of travels in the datasets of 
January-March 2019 and April 2013 - April 2014. Since the intracity 
mobility was relatively stable on a weekly scale (Supplementary Fig. S3- 
S4), we used each city’s daily average of intracity mobility intensity 
from 2 January to 22 January 2020, the continuous three week before 
the Wuhan lockdown, as the baseline of pre-pandemic movements 
within each city. Since the inflow and outflow presented significant 
changes between weeks, hinting at seasonal variations (Supplementary 
Fig. S3-S4), weekly variation coefficients were considered for their 

Fig. 1. Spatiotemporal heterogeneity of intra- and inter-city mobility recovery in 313 Chinese cities in 2021. 
a, Changes of intracity mobility, outflow, and inflow in 2021. The recovery degrees of inflow/outflow are not presented for the Chunyun period and its following 
week (i.e., 28 January -14 March 2021). Daily new COVID-19 cases include laboratory-confirmed cases and asymptomatic infections reported by the 313 studied 
cities. b, Spatiotemporal heterogeneity in recovery trajectories between cities. The map shows the geographical locations of cities and their pre-pandemic relative 
intracity mobility and outflow intensity on 16 January 2019, provided by the Baidu location-based service. Both intensities were classed into five levels by the 
Natural Break method in ArcGIS 10.6. The changes in mobility across space and time are demonstrated by taking the daily recovery trajectories of four cities, i.e., 
Chengdu, Harbin, Zhengzhou, and Beijing, in 2021. 
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baseline calculation. 
Step 2: Identifying the pre-pandemic inflow/outflow baseline based 

on their weekly variation coefficients. Weekly variations were extracted 
from the intercity mobility datasets for 2013–2014. We used the daily 
average inflow/outflow intensity of city i during the week before Chu-
nyun in 2014 (i.e., 09–15 January 2014) - denoted as I14i- as the baseline 
for evaluating seasonal changes in mobility. For data available from1 
January to 29 April 2014, the weekly variation coefficients of city i on 
week w (where w<18) were expressed as: Vi,w =

I14i,w
I14i

, where I14i,w is the 
daily average inflow/outflow intensity of city i on week w of 2014. For 
date from 30 April (where w ≥ 18), the intercity mobility data from 
2013 was used: Vi,w =

I13i,w+Ici
I14i

, where I13i,w is the daily average intensity 
of city i on week w of 2013. Ici is the annual inflow/outflow change for 
city i, calculated by comparing the daily average mobility intensity 
during the overlapping week of 2013 and 2014 (i.e., 23–29 April). Each 
city’s inflow/outflow baseline was the average daily intensity for the 
week prior to the Chunyun period in 2020 (i.e., 3–9 January) (Ii) 
multiplied by the weekly variation coefficients: Ii,w = Ii × Vi,w. The 
inflow/outflow baseline quantified the intercity mobility in 2020 before 
the COVID-19 pandemic, serving as a basis for comparison with 
following mobility patterns. 

Step 3: Measuring the degrees of mobility recovery. The magnitude 
of city-level daily mobility recovery in 2021 was measured by the pro-
portion of daily mobility intensity in 2021 to that on the same day of the 
Gregorian calendar in 2020. The formulas are RI

i,t =
Ii,t
Ii,w, RIN

i,t =
INi,t
INi,w

, and 

ROUT
i,t =

OUTi,t
OUTi,w

, where Ii,t, INi,t, and OUTi,t are the intracity mobility, 
inflow, and outflow intensity of city i on day t, respectively. Ii,w, INi,w, 
and OUTi,w are the intracity, inflow, and outflow baseline of city i on the 
week w of day t, respectively. As this study focused on the usual mobility 
beyond major holiday periods, considering the misalignment of the 
Spring Festival (i.e. Lunar New Year) holiday between lunar and Gre-
gorian calendars, the period of major Chinese New Year’s seasonal 
migration (also known as Chunyun period) and one week after (from 28 
January to 15 March 2021) was excluded from the intercity mobility 
recovery modelling. 

3.3. Quantifying non-linear and delayed effects of factors on mobility 
recovery 

We built spatiotemporal Bayesian hierarchical models for the re-
covery degrees of intracity mobility, inflow, and outflow, respectively, 
across 313 Chinese cities from 1 January to 30 December 2021. It was 
assumed that the recovery degrees conform to Gaussian dis-
tributionsRi,t |μi,t ,σ ∼ N(μi,t ,σ2), where μi,t was the corresponding distri-
bution expectation (or mean) and σ was its standard deviation. The 
Poisson and negative binomial distribution baseline models were also 
tested but failed to get enough initial value to explain residual over-
dispersion to spatiotemporal random effects (See below). Integrated 
nested Laplace approximations in a Bayesian framework were used to 
estimate model parameters in R version 4.1.3 (Rue et al., 2009). 

A base model was constructed for mobility recovery, comprising two 
spatiotemporal random effects, holiday, and socioeconomic factors. The 
first spatiotemporal effect accounted for the day-of-the-week periodicity 
of mobility by a cyclic random walk model of order one (RW1), which 
allowed the mobility recovery in one day to depend on its immediate 
preceding day (Lowe et al., 2021). The other spatiotemporal random 
effect accounted for the inter-week variability in cities by a modified 
Besag-York-Mollie (BYM) model (Riebler, et al., 2016). It included an 
unstructured spatial random effect to explain city-specific noise (e.g. 
health care, testing ability, and policy adherence disparities) and a 
conditional autoregressive model to account for geographical and social 
spillover effects (Petherick et al., 2021; Lai et al., 2022). For both 
random effects, we applied the Penalized Complexity (PC) prior for the 
precision with Pr=0.01(Simpson et al., 2017). Besides, the holiday and 

GDP factors were included in the base model as fixed effects to eliminate 
the impact of short public holidays and socioeconomic levels on 
mobility. The base model was as follows: 

Ri,t = α + βc(i/p)d(i) + Uc(i)w(t) + Sc(i) + Vh + Vgi  

where α is an intercept, βc(i/p)d(i) is the city- or provincial- level day-of- 
the-week random effects (see Supplementary Spatiotemporal effects), 
Uc(i)w(i) is the week-specific unstructured spatial random effect at the city 
level, Sc(i) is the structured spillover effects at the city level, Vh is the 
fixed effect for public holidays, and Vgi is the fixed effect for city-level 
socioeconomic status. 

Distributed lag nonlinear models (DLNMs) were included to access 
the exposure-lag response associations between the SR of motilities and 
epidemics (Gasparrini, 2014). The delayed effects of outbreaks and in-
terventions were assessed by 14 days and up to 28 days when necessary, 
with natural cubic splines selected for both the exposure and the lag 
dimensions. The epidemic model was: 

Ri,t = α + βc(i/p)d(i) + Uc(i)w(t) + Sc(i) + Vh + Vgi + f .l(In, d)i + f .
l(Psi, d)i where f .l(In, d)i is the incidence DLNM and f .l(Psi, d)i is the 
policy stringency DLNM (Supplementary Distributed lag nonlinear 
models). The “dlnm” package in R version 4.1.3 was used for analysis. 

Assuming exposure to the epidemics would reduce travel, we used 
the suppression risk (SR) to describe the relative risk of mobility reduced 
to below the pre-pandemic baseline in the situation of variables relative 
to the normal case. SR = 1 −

P(R|E)
P(R|¬E), where P(R|E) is the posterior ratio of 

the exposure and P(¬E) is the prior ratio of exposure. The values of SR 
close to 0 indicate the exposure might not result in mobility change from 
the pre-pandemic baseline and the increase of SR suggests increased 
risks by the exposure. Given the scarcity of research samples at higher 
incidences, which may reduce the generalisability of model output made 
their output interpretation cannot represent the general situation, we 
estimated the maximum SR of mobility under all incidences to analyse 
the most impact of local outbreaks on mobility resilience. Meanwhile, 
travels were assumed to be affected during one outbreak. The delayed 
effects of a low incidence (i.e., the average minimum incidence in five 
cities with the smallest population size) near the end of outbreaks were 
explored to estimate how long the repercussions might last after out-
breaks ebb. Since the resurgence of infections was likely to rebound the 
SR, only the time before SR reaches its lowest value or 0 was considered 
as the delayed effect of outbreaks on mobility recovery. 

To assess the mobility adaptation under compound disasters, we 
calculated the linear interactions between incidence DLNM and extreme 
weather by changing the centring weather conditions before introducing 
them into the Bayesian hierarchical model. The performance of weather 
factors, weather variations, and weather anomalies were compared to 
find out which factors could better explain the mobility change. The 
selected temperature and precipitation variables were centred at 
different levels (see Supplementary Methods), according to the in-
dicators of cold waves, hot waves, and rainstorms in the meteorological 
disaster early warning signal system implemented by the China Meteo-
rological Administration. The interacted cross-basis variables and the 
weather variable as a fixed effect were added to the epidemic model to 
build incidence-weather models (formulas in Supplementary Table S4- 
S5). Further, to access the response of cities with different socioeco-
nomic settings, the linear interaction between the compound disasters 
and urban density/GDP levels was tested (specific interaction levels and 
formulas see Supplementary). 

The goodness-of-fit criteria, measured by the deviance information 
criterion (DIC) and the log score (Lowe et al., 2021), were applied to 
compare model performances and identify the best-fitting model for 
intracity mobility, inflow, and outflow recoveries, respectively. DIC 
balances model accuracy against complexity by estimating the number 
of effective parameters, while the log scores measure the predictive 
power of the model when excluding one data point at a time. For both 
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measures, smaller values denote better-fitting models. The association 
between DLNMs and SRs of mobility in better-fitting models were used 
to interpret the results in coordination. 

3.4. Sensitivity and validation 

To check the robustness of models and results, we also conducted 
sensitivity analyses from five perspectives. First, the maximum SR under 
fixed incidences interacted with extreme weather was checked in each 
model in 2021 to identify whether the result was stable across the 
different scales of outbreaks. Second, the maximum SRs under com-
pound risks for each types of travel at two different times were 
compared, i.e., from 1 October 2020 to 23 January 2021 and from 1 
January to 30 December 2021, to identify weather the result was robust 
across time. Third, the interacted levels were changed to verify the re-
sults. In comparing the impact of compound risks in cities with different 
GDP levels, the maximum SR not only under the same incidence but the 
same number of reported infections were evaluated and compared. 
Since the log-transformed incidence (In) and GDP (Vg) was significantly 
correlated in cities with outbreaks (r=-0.54, P<-0.001), the linear 
regression model: In = 9.78 − 0.68 × Vg was applied to calculate the 
incidences across GDP levels. Fourth, settings for extreme weather 
events, extreme high/low temperatures specifically, were changed to 
confirm the robustness of conclusions. On the one hand, we have 
modified the settings for high and low temperatures in the sensitivity 
analysis, which used winter data from October 2020 to January 2021 
and did not have extremely high temperatures over 35 ◦C (see Supple-
mentary Sensitivity analysis). On the other hand, spatial varying extremes 
at the city level, i.e., 10th/90th percentiles of daily maximum temper-
ature in the past 30 years from 1990 to 2019, were introduced to 
consider regional differences. Fifth, the models with one DLNM and with 
the combination of two DLNMs were compared to determine whether 
the increase of DLNMs would affect the results of included DLNM, i.e., 
whether the SR of incidence might be affected by un-included factors. 

To further validate the improvement of more complex, data-driven 
mobility recovery models, the difference in mean absolute error 
(MAE) were calculated between the base models and the selected models 
to identify the proportion and location of cities for which improved 
model fit. A cross-validation analysis was conducted based on the pa-
rameters and hyperparameters of the best-fitting model by leaving out 
one week each time. The posterior predictive distributions of the 
mobility recoveries were estimated by extracting 1000 random values 
from a Gaussian distribution with mean and standard deviation esti-
mated from the model for the excluded week prediction. We fitted 52 
times for the intracity mobility model and 46 times for the intercity one. 
The posterior predictive distributions of mobility recoveries for each 
week (i.e., mean and 95% credible interval) were grouped at the pro-
vincial level and compared with the observed ones. 

4. Results 

4.1. Spatiotemporal heterogeneity of mobility in recovery trajectories 

To identify the trajectory of mobility recovery, we defined the degree 
of relative mobility at 100% or higher implying a return to the pre- 
pandemic level. Fig. 1 shows that intracity and intercity travel for Chi-
nese cities held distinct recovery trajectories, corresponding to local 
outbreaks and restrictions. In general, intracity mobility rebounded 
more than intercity travel (Fig. 1a). The degree of recovery averaged at 
103.5% (Interquartile [IQR]: 96.0%, 110.2%) in 2021 for intracity 
mobility, followed by 64.6% (IQR: 56.7%, 76.1%) for inflow, and 69.4% 
(IQR: 56.7%, 81.7%) for outflow. In 282 days (77.5%) of the year 2021, 
average intracity mobility was higher than that in 2020. For most of the 
year – 317 days (95.5%) for inflow and 281 days (84.6%) for outflow – 
intercity mobility did not return to pre-pandemic levels. The temporal 
changes in incoming and outgoing travel were similar, with a Pearson 

correlation of 0.91 (P<0.001) between their degrees of recovery. 
Notably, all the dates where inflow and outflow recovered by more than 
105% were either short public holidays (3–7 days long) or one day 
preceding and following them (Fig. 1a). 

Recovery of mobility also depended on the scale of outbreaks. Under 
the zero-COVID policy, 103 out of the 313 studied Chinese cities 
confirmed 7455 locally infected people between 1 January and 30 
December 2021, with a maximum of 176 daily new cases at the city 
level. Coincident with new infections, the degree of mobility recovery 
decreased to 82.5%, 46.9%, and 45.8% of the total average for intracity 
travel, inflow, and outflow, respectively, while the level of recovery 
across cities was negatively correlated with the incidence of COVID-19 
(i.e., r=-0.51, P<0.001 for intracity mobility, r=-0.48, P<0.001 for 
inflow, and r=-0.49, P<0.001 for outflow, respectively). However, even 
if the local transmission was fully interrupted, mobility in affected cities 
could not resume immediately. Examples of this were observed in 
Chengdu and Harbin in November 2021, and in Zhengzhou and Beijing 
in August (Fig. 1b), suggesting that epidemics might have delayed 
mobility recovery. In addition, policy stringency, temperature, and 
precipitation were also correlated with the degree of mobility recovery 
(P<0.01) (see Supplementary Table S1-S3). 

4.2. Nonlinear and delayed impacts of the epidemic on mobility recoveries 

The comparison of goodness-of-fit criteria, shown in Supplementary 
Table S4-S5, indicated the introduction of DLNM improved model ade-
quacy statistics compared with incidence or policy factor with no lags, 
proving the rationality and necessity of considering the delayed effects 
in understanding mobility recovery after epidemics (see Methods). 
Including incidence as DLNM resulted in the best-fitting intracity model, 
while the combination of incidence and policy stringency resulted in the 
best-fitting intercity models (hereafter referred to as epidemic models). 
The provincial interventions barely explained the intracity mobility re-
covery discrepancy at the city level in 2021 but affected cross-city 
movements. 

Outputs from the epidemic models showed that the higher COVID-19 
incidence and stricter policies were associated with the greatest SR 
amongst the three different types of travel, with varying lags (Fig. 2). 
The greatest SR of intracity mobility was found on the day that the 
highest number of cases was reported in each outbreak (maximum SR 
0.08, 95% confidence interval (CI): 0.07–0.09), followed by a decrease 
in SR over time (Fig. 2a). The SR under a low incidence scenario 
increased at a lag of 0–21 days, suggesting that population movement 
within cities might still be affected within three weeks after an outbreak. 
The maximum SR of inflow was found at the highest incidence lagged by 
3 days (0.05, 95% CI: 0.03–0.10) (Fig. 2b), while that of outflow (0.06, 
95% CI: 0.03–0.14) happened with no time lag (Fig. 2c). The SR under 
outbreaks of inflow and outflow increased at a lag of 0–6 days. In 
addition, the strictest policies were also most likely to suppress intercity 
mobility. The maximum SR reached 0.17 (95% CI: 0.15–0.19) for inflow 
(Fig. 2e) and 0.18 (95% CI: 0.17–0.20) (Fig. 2f) for outflow on the day 
implementing the strictest policy, and then decreased over time. The SR 
of inflow and outflow increased after the exposure to interventions at a 
lag of 0–4 days (Fig. 2e and 2f). 

4.3. Combined effects of epidemics and extreme weathers on mobility 
recovery 

To distinguish the effects of weather, its variation, and anomalies on 
mobility recovery under the pandemic, weather-related factors were 
added to the epidemic model as fixed effects and compared their model 
goodness-of-fit (see Supplementary Table S4-S5). The results show that 
the inclusion of daily maximum temperature had the most significant 
model-fit improvements for all three types of travel, compared to 
average temperature, temperature variation from the baseline period, 
and temperature anomaly (i.e., the difference from the 30-year average 
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from 1990 to 2019). Meanwhile, precipitation anomaly also improved 
the model fit for all three types of travel (detailed in Supplementary), 
which was used for the following interaction analysis. 

We added the interaction between incidence and extreme daily 
maximum temperatures/precipitation anomaly to the epidemic model 
to identify how extreme weather affected mobility recovery after the 
pandemic, in terms of intensity and timing. As illustrated in Fig. 3, the 

maximum SR always occurred under the interaction of incidence and 
high temperature/high abnormal precipitation, regardless of travel 
type. Compared with extremely low temperature (4 ◦C), extremely high 
temperature (35 ◦C) uplifted the maximum SR after outbreaks for 
intracity mobility from 0.08 (95% CI: 0.07–0.10) to 0.09 (95% CI: 
0.06–0.12), for inflow from 0.03 (95% CI: 0.02–0.10) to 0.11 (95% CI: 
0.05–0.19), and for outflow from 0.05 (95% CI: 0.02–0.13) to 0.10 (95% 

Fig. 2. Mobility recovery in lagged responses to varying scenarios of COVID-19 incidence and intervention policy stringency. 
a, b, and c The suppression risks (SRs) of mobility after the report of COVID-19 incidences (i.e., daily new cases per million people in each city) at different time lags, 
compared with no new case condition. d, The data distribution (points) and probability density (boxplot) of incidence and policy stringency index under outbreaks. e 
and f, The SRs of inflow and outflow under the policy implementation with different stringencies, respectively, compared with the loosest interventions of an index 
at 27. 

Fig. 3. Suppression risks of mobility under epidemics and different temperature and precipitation anomaly levels. 
a, The maximum SR of intracity travel, inflow, and outflow under COVID-19 outbreaks in 2021, interacted with extremely low temperature (4 ◦C), extremely high 
temperature (35 ◦C), no precipitation anomaly (precipitation anomaly as 0 mm/d) and abnormal rainfall (20 mm/d), relative to no COVID-19 case situation. b, The 
maximum SR of intracity, inflow, and outflow under fixed incidences, i.e., 1.4 cases per million people (around the 75th percentile of all incidences) and 0.45 cases 
per million people (around the median), interacted with temperature and precipitation anomaly in 2021. The secondary y-axis represents the proportion of changes 
in maximum SR under extreme weather relative to SR without considering weather conditions. 

H. Liu et al.                                                                                                                                                                                                                                      



Sustainable Cities and Society 99 (2023) 104872

8

CI: 0.06–0.22) (Fig. 3a). The interaction with extreme heat, rather than 
cold, heightened the SR of mobility after epidemics. Compared with 
normal precipitation conditions, the high rainfall (20 mm/d) increased 
the maximum SR from 0.08 (95% CI: 0.07–0.10) to 0.09 (95% CI: 
0.07–0.11) for intracity mobility, from 0.06 (95% CI: 0.03–0.11) to 0.20 
(95% CI: 0.05–0.35) for inflow, and from 0.06 (95% CI: 0.03–0.12) to 
0.18 (95% CI: 0.03–0.33) for outflow (Fig. 3a). This conclusion 
remained the same under different incidence rates (Fig. 3b). Moreover, 
by changing fixed threshold values of extreme weather or adopting rare 
temperatures at the city level (Supplementary-Sensitivity analysis), the 
sensitive analyses proved the robustness of the result (Supplementary 
Fig. S5). 

Compared with the intracity mobility, intercity movement was more 
sensitive to the extreme weather under the pandemic (Fig. 3). Compared 
with outputs from the epidemic model, extremely high temperature 
aggravated the maximum SR after outbreaks by 12.5% for intracity 
mobility, 120% for inflow, and 66.7% for outflow (Fig. 3a). Compared 
with no consideration of rainfall, rainstorms increased the maximum SR 
after outbreaks by 12.5% for intracity mobility, 300% for inflow, and 
200% for outflow. The impact of abnormal precipitation on human 
movements under epidemics was greater than that of high temperatures. 
Under the same incidence, the results still held. The SR for intracity 
mobility remained stable across temperatures but increased by 33.3% 
under increased rainfall (20 mm/d) relative to without considering 
weather conditions (Fig. 3b). 

To estimate how long the repercussions might last after outbreaks 
ebb, we explored the delayed effect of a low incidence (i.e., the average 
minimum incidence in five cities with the smallest population size) near 
the end of outbreaks. Fig. 4 shows high temperature shortened the lag 
effect of outbreaks, while the delayed recovery of mobility after 

abnormal heavy rain was mainly reflected in cross-city movements. 
Extremely high temperature (35 ◦C) shortened the lag effect of epi-
demics by 6 days (i.e., from 21 days to 15 days) for intracity mobility 
and by less than 1 day for intercity mobility (Fig. 4a). In contrast, intra- 
and inter- city movements responded differently to the combination of 
epidemics and rainstorms. The increased rainfall shortened the lag ef-
fects of outbreaks, i.e., from 21 days to 16 days under 20 mm/d and to 19 
days under 50 mm/d. Meanwhile, the lag times of inflow and outflow 
recoveries after outbreaks were extended from 0 to 7 days to 2–11 days 
after the abnormal increase of precipitation by 50 mm/d (Fig. 4b). The 
delayed effects of high temperatures on the mobility recovery after 
outbreaks were consistent with the findings above, although at different 
lag times, no matter in the analysis of different times (Supplementary 
Fig. S6) or in analysis adopting spatiotemporal various extremes (Sup-
plementary Fig. S7). 

4.4. Differentiation of effects across socio-economic conditions 

We found that the inclusion of urban population density and GDP 
both improved the model fit for all three types of travel (see Supple-
mentary Table S4-S5), suggesting that the socio-economics of cities 
might affect local mobility recovery following the simultaneous occur-
rence of extremely high temperatures and outbreaks. The higher the 
urban population density, the greater the impact of combined disasters 
on mobility but the quicker the mobility recovery (Table 2 and Fig. 5a). 
The maximum SR of intracity mobility under all incidences increased 
from 0.08 (95% CI: 0.06–0.10) in sparse cities with 3000 people/km2 to 
0.10 (95% CI: 0.08–0.12) in dense cities with 8000 people/km2, relative 
to no cases (Table 1). The increment was from 0.04 (95% CI: 0.03–0.10) 
to 0.05 (95% CI: 0.02–0.13) for inflow and from 0.05 (95% CI: 

Fig. 4. Lag-response of mobility under the interaction of COVID-19 outbreaks and extreme weather conditions. 
a, High temperature shortened the lag effects of outbreaks. b, The delayed recovery of mobility after abnormally heavy rain was mainly reflected in cross-city 
movements. The lag time under outbreaks was interpreted from the average minimum incidences in five cities with the smallest population size, i.e., 1.1 daily 
new cases per million people, suggesting the aftershock of outbreaks on mobility. 
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0.03–0.11) to 0.06 (95% CI: 0.03–0.12) for outflow (Table 2). Under the 
same incidence, the increasing impact of combined disasters on mobility 
also existed (Fig. 5a). Compared with sparsely populated cities, the lag 
effects of overlapping outbreaks and heatwaves in dense cities were 
slightly lower (Fig. 5a). In addition, although the maximum SRs for 

intracity mobility and inflow were found in wealthy cities (Table 1), all 
three types of movement were most likely to be suppressed in cities with 
lower GDP levels, and mobility in wealthier cities took longer to recover 
amidst a combination of epidemics and extreme heat (Fig. 5b). 

Under extremely high temperatures, cities with different socio- 
economic attributes exhibited more noticeable variations in their re-
covery following the epidemic. When compared to sparsely populated 
cities, densely populated cities experienced an increase of 0% to 25% in 
maximum SR under compound disasters and 0% to 16.7% under out-
breaks (Fig. 6a). Similarly, compared to cities with lower GDP levels, 
wealthier cities witnessed increments of maximum SRs, ranging from 
40% to 75% under combined impacts, and from 33.3% to 50% under 
outbreaks (Fig. 6b). These comparisons were made while considering 
the same low incidence rate. 

The sensitivity and validation analyses revealed that the intensity 
and changes of SRs, under the interaction of outbreaks and high tem-
peratures across different socio-demographic settings, appeared 
coherent across different periods in 2020–2021 (Supplementary 
Table S6 and Fig. S8). The impact of COVID-19 incidence on changes in 
intracity mobility was relatively stable, regardless of policy impact 
(Supplementary Table S7 and Fig. S9). Compared with the base model, 
the incidence-temperature-density models reduced the mean absolute 
errors in 169 (54.0%) of all 313 cities for intracity travel, 313 (100%) for 
inflow, and 296 (94.6%) for outflow, suggesting improved model fits in 
these cities (locations can be found in Supplementary Fig. S10). In 
addition, the out-of-week posterior predictive mean estimates of 

Table 2 
Maximum SR of mobility recovery under the collision of outbreaks and 
extremely high temperature (35 ◦C), by urban population density and GDP 
levels.  

Socioeconomic conditions Intracity 
mobility 

Inflow Outflow 

Urban 
density 

Sparse City 0.08 
(0.06–0.10) 

0.04 
(0.03–0.10) 

0.05 
(0.03–0.11)  

Medium- 
density City 

0.09 
(0.07–0.11) 

0.05 
(0.03–0.11) 

0.05 
(0.03–0.10)  

Dense City 0.10 
(0.08–0.12) 

0.05 
(0.02–0.13) 

0.06 
(0.03–0.12) 

GDP Low GDP 0.09 
(0.08–0.11) 

0.08 
(0.05–0.11) 

0.09 
(0.06–0.13)  

Medium GDP 0.10 
(0.08–0.12) 

0.06 
(0.03–0.09) 

0.07 
(0.04–0.12)  

High GDP 0.15 
(0.12–0.18) 

0.08 
(0.03–0.13) 

0.08 
(0.04–0.14) 

Note: The maximum SR and its 95% CI under different scenarios, relative to no 
COVID-19 case situation, are presented in the table. Details are provided in the 
Supplementary Methods. 

Fig. 5. Lag-response of mobility under outbreaks and extremely high temperatures in cities with different population density and GDP levels. 
a, The lag-response of intracity, inflow, and outflow under the compound COVID-19 outbreaks and extremely high temperature (daily maximum temperature=35 ◦C) 
disasters in sparse cities (dark blue, urban density=3000 people/km2) and dense cities (red line, urban density=8000 people/km2) at the average of the minimum 
incidence in five cities with the smallest population size (1.1 cases per million people), relative to no new case conditions. b, The lag-response of intracity, inflow, and 
outflow under the compound outbreaks and extremely high temperature disasters in cities with low GDP (orange line, lower quartile of GDP=87.5 billion RMB) and 
high GDP (green line, upper quartile of GDP=312.8 billion RMB) at the same incidence (1.1 cases per million people), or at the same number of daily new cases (see 
Methods, blue line for cities with high GDP at the incidence of 0.45 cases per million people), relative to no new case conditions. Shaded areas represent 95% CI. 
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recovery degrees suggested our model successfully distinguished 
mobility recoveries between provinces, with better fitting curves for 
intercity mobility than intracity (Supplementary Fig. S11-S13). 

5. Discussion 

This study used spatiotemporal Bayesian inference models to inves-
tigate the non-linear and delayed effects of epidemics on intra- and inter- 
city mobility recoveries across 313 Chinese cities under extreme 
weather events and different socioeconomic conditions during the 
pandemic in this research. It allowed the interaction of disasters, not 
only human-induced epidemics but also natural hazards, providing 
methodology and framework for the impact assessment of the multiple 
crises. By quantifying the combined effects of epidemics and extreme 
weather, this study enriches the existing knowledge of urban recovery 
after compound disasters. 

This study found that intracity movements were less vulnerable to 
extreme weather than intercity ones under the pandemic. Facing epi-
demics and extreme weather events, citizens might reduce unnecessary 
cross-city travel, but intracity movements related to commuting and 
maintaining daily life would be preserved (Kellermann et al., 2022; 
Wang, et al., 2022). For example, following the extreme rainfall in 
Zhengzhou in July 2021, the government first resumed public transport 
operation to ensure the intracity movements of people (Tencent News, 
2021). Delays in urban recovery caused by the interaction of outbreaks 
and heavy rainfall were mainly reflected in cross-city movements. Thus, 
the resilience of intercity and intracity movements needs to be consid-
ered separately in preparation for compound disasters. 

Gravity models have widely been used to estimate human movement 
and explore its push-pull factors (Zipf, 1946). Assumptions of such 
models are that human movement between regions is inversely pro-
portional to the distance between them but positively related to a range 
of demographic and socioeconomic factors such as total population, 
urbanisation and income (Garcia et al., 2015; Sorichetta et al., 2016; Lai 
et al., 2019). However, this research shows that patterns contrary to 
those predicted by gravity models might have occurred during the re-
covery of population movements during the compound disasters. The 
greater suppression risk of inflow under outbreaks appeared in cities 
with higher GDP/density/population size levels, which would be 
considered destinations of population immigration in gravity models. 
Travel-related NPIs prevent people from entering big cities to reduce the 
risk of infection exposure or epidemic spread, which might be one of the 
reasons for the delayed mobility recovery in wealthier cities. 

The high-density and low-GDP cities would be the most vulnerable 
ones confronting compound disasters. In 2021, the log-transformed GDP 
level for cities with outbreaks was significantly negatively correlated 

with their policy stringency index (r=-0.65, P<0.001). Cities with lower 
GDP adopt stricter policies than cities with higher GDP/population size 
to prevent local virus transmission since their local health care condi-
tions, economical safety nets, and transport supply were inadequate to 
handle large-scale outbreaks (Charoenwong et al., 2020; Mena et al., 
2021; Wang, et al., 2022). However, it should be noted that these cities 
were already highly vulnerable to extreme weather events (IPCC, 2022). 
In order to enhance anticipatory adaptation in disaster preparation, it is 
important for the government to strike a balance between public safety 
and climate adaptation measures, avoiding the amplification and 
application of one-size-fits-all restrictions. Furthermore, additional 
financial support should be allocated to these vulnerable cities to 
enhance their basic infrastructure and social protection systems, thereby 
building resilience to future climate shocks. It is crucial to recognize that 
these efforts require long-term planning and implementation. Therefore, 
preventive actions should be prioritized and taken seriously by all 
stakeholders. 

The study is also subject to several limitations. First, we examined 
mobility changes under a zero-COVID policy in China, which has been 
lifted. However, extreme weather still challenges the epidemic response 
of cities, like the temporal overlapping of the rainy season and cholera 
outbreaks in 2022 across Southern Africa. The research provides a 
practical analytical framework for analysing urban response and resil-
ience after combined disasters, whose findings and implications could 
inform integrated strategies for pandemic preparedness and climate 
adaptation. Second, a provincial-level policy stringency index was 
applied, instead of the city-level policy stringency index, due to the data 
accessibility. The policy stringency in China could vary across cities and 
even communities due to the varying epidemic situations and official 
response, leading to a reduced generalisability of provincial policies. 
Even though we proved that the inclusion of policy stringency did not 
influence the model results of incidence, it was established on the 
limited usage of stay-at-home orders from October 2020 to December 
2021. The mobility response to the epidemic in 2022 in China was also 
explored, when different cities adopted the strictest travel restrictions to 
curb the community transmission of the highly contagious Omicron 
variant, thus affecting the interpretation of extreme weather on mobility 
recovery (Supplementary Results). Introducing city-level policies might 
better explain the urban mobility adaption processes, which would be 
improved in future studies. Third, the pre-pandemic baseline of intercity 
mobility in 2020 was adjusted by the seasonality from 2013 to 2014, 
bringing the mobility change caused by extreme weather conditions in 
2013–2014 into the baseline calculation. Such inclusion was almost 
inevitable in the data-driven analysis. Weather variations between 2021 
and the baseline calculation period were included to rule out the 
assumption that weather variations dominated mobility changes. Last 

Fig. 6. Comparison of SRs under compound disasters and epidemics in cities with different socio-economic conditions. 
a, The changes of the maximum SRs in low-GDP cities, compared with those in high-GDP cities. b, The changes of the maximum SRs in dense cities compared with 
those in sparse cities. All comparisons were made while considering the same low incidence rate (1.1 cases per million people). 
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but not least, we solely considered the interaction of epidemics and daily 
maximum temperature/precipitation anomalies, whereas meteorolog-
ical factors may be superimposed to trigger more significant threats. For 
example, precipitation at extremely low temperatures might result in 
freezing conditions, delaying movement recovery. The effects of com-
bined meteorological factors need to be explored in further research. 

6. Conclusion 

This study revealed the intracity and intercity (including inflow and 
outflow) mobility recovery processes at the city level and day scale 
under the compound disasters of the pandemic and extreme weather 
events, through long-term and large-scale quantitative research. The 
findings indicated that extreme weather, i.e., extremely high tempera-
tures and extremely high levels of precipitation anomalies, aggravated 
the suppression risk of mobility after epidemics, which was further 
intensified in high-density or low-GDP cities. Heat shortened the lag 
effects of outbreaks on mobility recovery, while abnormal rainfall 
delayed intercity mobility recoveries during outbreaks. Given the com-
bined risks of natural disasters under climate change and the potential 
for future epidemics caused by other emerging infectious diseases, the 
findings and data-driven analytical framework from this study can serve 
as methodological and transferable knowledge to support urban resil-
ience quantification under multiple crises. Future research on the 
combined effects of epidemics and extreme weather should be 
strengthened in the climate change environment. 
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